
Fermi National Accelerator Laboratory 
FERMILAB-PUb-88/61-A 
May 1988 

ZERO MODES AND ANOMALIES IN SUPERCONDUCTING STRINGS 

Lawrence M. wiarow 

Department of Physics 

Enrico Fermi Institute 

The University of Chicago 

Chicago, IL 60637 

NASA/Fermilab Astrophysics Center 

Fermi National Accelerator Laboratory 

Batavia, IL 60510 

Abstract 

Superconductivity in cosmic strings occurs when electrically charged fermions are 

trapped as msssless particles (Jackiw-Rossi zero modes) in the core of a string. Cur- 

rents are generated when an electric field is applied along the string, or more realistically, 

when the string moves through a cosmic magnetic field. In realistic models [e.g., those 

inspired by grand unified theories], the fermion-vortex systems that arise can be quite 

complicated and the question of whether or not superconductivity oc,curs is very model 

dependent. For example, in certain models, mixing between right and left moving zero 

modes gives rise to an effective mass for the fermions on the string. The currents in this 

case, at least for reasonable values for cosmic magnetic fields, are uninterestingly small. 

In this paper, we present a simple method for determining the number of true zero modes 

in a special class of fermion-vortex systems. These results are then applied to a particular 

particle physics model based on the gauge group Es. We also consider the possibility that 

c left mouers Qz f Crighi mouer~ q2 where q is the electromagnetic charge of a zero mode. 

In this situation, which occurs in ‘frustrated’ as well as global strings, there is a gauge 

anomaly (and therefore charge non-conservation) in the effective (1 + 1).dimensional the- 

ory for the fermion-string system. In the presence of an electric field, the string acquires 

both charge and current. Charge non-conservation on the string is accounted for by an 

inflow of charge from the world outside the string. However, both charge and current can 

be screened, either by polarization of the vacuum or be the surrounding plasma. 
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htroduction 

Superconducting cosmic strings [l], if they exist, may have important consequences 

for the Universe. For example, they may be responsible for the formation of large scale 

structure [2] or the production of ultra-high energy cosmic rays [3]. The electric current in a 

superconducting cosmic string can be carried by either fermions (Jackiw-Rossi zero modes 

[4] trapped in the string) or by bosonic zero modes associat,ed with a charged condensate 

localized in the core of the string [l]. In either ca,se, the question of whether or not the 

string is superconducting is very model dependent. In this paper, we address this question 

for the fermionic superconducting cosmic string by studying a variety of fermion-vortex 

systems. Some of these results are applied to the cosmic strings possible in a specific grand 

unified theory (GUT) based on the gauge group Eg. Superconductivity with bosonic charge 

carriers ha,s been studied in detail elsewhere [5] a,nd will not be discussed in this work. 

The simplest model of a fermionic superconducting cosmic string a,ncl the one proposed 

by Witten [l] is based on the gauge group U(1)’ x Li(l) where U(1) is the unbroken gauge 

symmetry of electromagnetism and U( 1)’ is the spontaneously broken gauge symmetry that 

gives rise to the string. If d is the scalar field responsible for the spontaneous symmetry 

brea.king of U(l)’ then a cosmic string is a non-trivial topological configuration of C$ and 

of the U( 1)’ gauge field A’,,. 

If fermions acquire a mass through Yukawa interactions with 4, then in the presence 

of a string, there are zero-energy solutions to the Dirac equation. These zero modes are 

localized in the core of the string and can be described by an effective Lagrangian for 

massless fermions in l+l dimensions. Fermions that also cxry ordinary electric charge 

couple to an external electromagnetic field through the axial vector anomaly. In particular, 

the divergence of the (1+ 1)-d’ lmensional current for a given species trapped on the string, 

j” E (r, j) is given by [6] 

d’j; = 
Xl@E 

2iT (1.1) 

[Here and throughout, reman letter indices will refer to the (t,z) (1 + 1).dimensional 

coordinate system where the z-axis is along the direction of the string. Greek letter indices 

will refer to the full (3 + 1)-d’ lmensional coordinate system. Our metric conventions are 

( - + ) for 1 + 1 dimensions and ( - + + + ) for 3 + 1 dimensions.] In Eqn(l.l), 4 is 

the electric charge of the trapped fermions, E is the electric field along the direction of 

the string, and X = +l (-1) for left (right) movers. [We refer to zero modes that travel 

in the --z (+z) direction as left (right) movers.] 1711 is th e number of zero mode solutions 

for the particular species considered and in the simplest models, n is the winding number 

of 4. We use high energy physics units where ii = c = ICB = 1. For the superconducting 
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cosmic string, one requires that there be both right a.nd left moving zero mocles with 

= ‘I2 = ,Df~t~uersq2~ right rnoz)er9 
Eqn(1.2) guarantees that the tota, contribution to the anomaly, Eqn(l.l), vanishes so that 

charge on the string is conserved: 

i3’J, = 0 (1.3) 

where J’ e (p, J) is the total (l+l)-dimensional electromagnetic current on the string 

found by summing over all zero modes present on the string. However, a current can be 

generated on the string. For example, in a constant electric field, 

dJ 

-z=- 
( 

c I42 + c 
right movers 

M2 g 
left moverS 1 

Eqn(l.4) indicates that currents persist in the absence an electric fields, i.e., the string is 

superconducting. 

The discussion above can be recast in terms of currents and a,nomalies in the parent 

(3+1)-dimensional theory. In all of the models that we will consider, the gauged currents in 

the (3+1)-dimensional theory <are assumed to be anomaly free. This implies that 8‘ Jp = 0 

where Jw is the four dimensional electromagnetic current. This equation holds regardless 

of whether or not there is a string present. [As discussed for example, by Witten [l], the 

requirement that the (3+1)-d imensional theory be free of anomalies places constraints on 

the particle content of the theory.] Eqn( 1.3) t t s a es that for a Nielsen-Olesen string, the 

(l+l)-dimensional electromagnetic current is also conserved. This, together with the fact 

tha,t P J, = 0 implies that there are no currents flowing on to the string. 

Eqn(l.4) expresses the fact that there is an anomaly in an ungauged current: 

c InI2 + c 
right movers left moverg 

(1.5) 

where J’ E ei’Jj is the dual to the electromagnetic current and 9’ = -es1 = 1 and 

sl’ = es2 = 0. Ji is classically conserved but quantum loop correction give rise to a 

non-zero divergence. Eqn(l.4) is just the special case of Eqn(1.5) where E is uniform but 

time-dependent. 

J’ can be derived from an ungauged (3+1)-d lmensional current Jf1 that also has an 

anomaly by integrating jh’ over the directions perpendicular to the string. By studying the 

anomaly equation for jfi and comparing the result with Eqn( 1.5) one can in fact determine 

the number of zero modes. This point has been discussed in detail by Hill and Lee [7]. 
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In Witten’s origimd model, left movers couple to d while right movers couple to 4*. 

No other Yukawa-type interactions are included. However, in ‘realistic’ models [e.g., those 

inspired by GUTS or superstrings] there can be many U(l)‘8 that are broken and many 

scalar fields that acquire VEVs. This considerably complicates the situation and there are 

a number of issues that must be addressed if one is to determine whether superconductivity 

occurs in a given model. For example, there may be interactions between right and left 

movers due to the presence of a scalar field that is nonzero in the core of the string [i.e., a 

scalar field that does not wind where there is a string]. Only a detailed study of the Dirac 

equations for the fermions in the background field of the string can determine whether or 

not any zero modes exist. In the absence of zero modes, it is easy to show that in most 

astrophysically realistic situations, the currents are uninterestingly small [S,S]. 

A second possibility considered is that a cosmic string traps only right or only left 

movers [or more generally, that Eqn(l.2) is not satisfied]. This leads to an uncancelled 

anomaly in the (1 + 1).dimensional theory for the string even though the full (3 + 1). 

dimensional theory is anomaly free. This situation arises in global or axion strings [lo] as 

well as ‘frustrated’ strings [ll] but not for Nielsen-Olesen type strings. [As will be discussed 

below, frustrated strings arise when there are more than one U(l)‘-charged scalar fields 

that acquire non-zero VEVs. In order that the string be a Nielsen-Olesen vortex or local 

cosmic string (i.e., that the energy of the string be localized in the core of the string) 

one requires special relations among the winding numbers of the fields. These condit,ions 

may not be satisfied for strings formed during a phase transition in the early Universe 

and strings can therefore have long-range contributions to their mass as in the case of the 

global string.] The breakdown of charge conservation on the string is accounted for by an 

inflow of charge from the (3 + 1).dimensiona, world just as in the axion string studied by 

Callen and Harvey [lo]. [We emphasize again that the four dimensional electromagnetic 

current mz~st be conserved if the (3+1)-dimensional theory is free of gauge anomalies.] In 

the presence of an external electric field, the string acquires charge and current. However, 

both charge and current are screened by the surrounding medium. The screening is due 

to either polarization of the vacuum [12] or plasma effects. 

In Section II we discuss the existence of zero modes first for Witten’s model, and then 

for a more general model that allows for interactions between right and left movers. In 

Section III we discuss the effective low energy (1 + l)-dimensional theory for the models 

considered in Section II. We find that superconductivity only occurs when there are zero 

modes present. In Section IV we apply these results to a specific model based on the gauge 

group Eg. In Section V we discuss anomalous superconductivity in frustrated strings as 

well as some electromagnetic properties of anomalous strings in astrophysical settings. 
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Finally, in Section VI we give a summary and some conclusions 

II Zero Modes in the Fermion Vortex System 

We begin this section by discussing the esist,ence of zero modes in the simple model for a 

superconducting cosmic string first proposecl by Witten. In a.ddition to the fields 4 am1 AL 

that make up the string, the model has 4 left-handed (2. component Weyl) spinors, Q,, r, A, 

and A. The spinors are written in the Van der Waerden notation (see, for example, ref. 

[13]). The charge assignments for the model, in units of the elementary charge e, are given 

in Table I. As discussed by Witten [I], this collection of spinors represents the minimal set 

of spinors that, is free of gauge anomalies in a U(I) x U( 1)’ gauge theory. For simplicity, we 

assume that the string is infinite, static, and straight and choose the z-axis of a cylindrical 

(r, 8, z) coordinate system to lie along the string. 4 a,ncl ‘4: have the form [14]: 

qs = f(Y”)e’“B A: = sin0 G a(T) A; = -cost3 - (2.1) 
er 

The asymptotic behavior of the fields is given by: 

f(T) -+ 0 for r--t 00 f(T) + 0 for T + 0 (2.2a) 

a(?-) + -2 fOT T -+ cm 
2 

a(r) + 0 for 1‘+ 0 (2.26) 

where q is a constant determined by the scalar potential. We see that for r + 03, D& E 

(ido - 2a(r)) 4/r + 0 so that the mass per unit length p (= O($)) is finite and is localized 

within a core whose radius is c( 1) -I. This is characteristic of a Nielsen-Olesen vortex or 

local (gauge) string in contrast to either the global ( axion) string or the frustrated string. 

As will be discussed below, for both global and frustrated strings, D& + 0(11/r) for 

r + 03 so that there are long range contributions to the mass per unit length of these 

strings. For a Nielsen-Olesen string, 

R = - -& 
J 

dln$ 

e 
z-z- 

x I 
dli A: 

e 
= -Jd’rF;, 

* 

(2.3) 

where Fi, = &A’, - y z d A’ is the z-component of the U(1)’ magnetic field. Eqn(2.3) holds 

only for Nielsen-Olesen strings. 

The Lagrangian for the fermions in the model is 
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L: = - i$$+“D,,Q,, - ji+# 6aD,LI’m - i .&$i”‘QD,,A, - i&#““D,,A, 
(2.4) 

- ig,$wT, - iy,4*AaA, + h.c. 

In Eqn(2.4), I?” =: c”@I’~, cl1 = E** = 0, and el* = -P = 1. 0“ = (I, f?) and @‘L = (I, -q 

where I is the 2 x 2 unit matrix and ? are the usual Pauli matrices. D,ili, = ($a + 

iqA, + &$A:,)$ etc. where (1 and q’ are the U( 1) and U( 1)’ 1 c mr les of (i, respectively. The b; 

conventions are those of, for example, Wess and Bagger 1131. Hereafter, we will suppress 

spinor indices. 

The existence of fermion zero modes in the background of the string may be demon- 

strated by directly solving the equations of motion for the fermions [-I] and by calculating 

the index of the relevzmt Dirac operator [15]. W e review these two techniques in some 

detail <as both methods will be used to study more complicated syst,ems. The equations 

for (Q, I?) and (A, A) decouple. For Q a.nd JY we have: 

t+‘D,,‘X - gld*l? = 0 

cr’D,i+ + gl+P = 0 

Zero modes are solutions to Eqns(2.5) of the form 

(2.5a) 

(2.5b) 

( 
%(Z - t)li,l(r, 0) Q. = 
%(Z + t)$z(r, 0) ) 

(2.6a) 

r& z? 
01(2 - t)T;(r, 0) 

> 

(2.6b) 
a(2 + t)Y3*(r, 0) 

with (?)I, 71) representing right movers and (&, -yz) representing left movers. With the 

zero mode ansatz Eyns(2.61, the equations for (&, n) and (tiz, ^/2) decouple. For & and 

qy we have: 

(a- + ieA-)& + gl#*y; = 0 (2.7a) 

(8, - ieA+h; + s14$z = II (2.76) 

where & = 8, f i8, and Ai = A’, L’L iA:. We note, for future reference, that 8, = 

e*“(& f $30) and ieA* = *e*ie u(r)/~. Similar equations can of course be written for 

the pairs of components ($1, n), (X1, &) and (X2, Sz) where X, and S, are the (r,0) 

dependent parts for the components of A and A as in Eqns(2.6). Eqns(2.7) can be written 

in the form 2X’, = 0 where V, = and 2, is a Dirac operator similar to the one 
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studied by Weinberg. Explicitly, ‘P = P;ai + Q where Q = ieA- Sl4 
r/l4 > -ieA+ P, = I and 

Pz = -ha SO that Pip,’ + PIPi = 2SiiI and P)Pj + PjPJ = 26ijl. The Dirac equation of 

v, = $; 
( 1 

is is ‘D’V, = 0 where YD’ is the Hermitian conjugate of ‘D. 

The index Z of 2, gives the number of normalizable solutions to the equation VV = 0 

minus the number of solutions to ‘D’V = 0. It follows that Z gives the number of left 

moving zero modes (lower components) minus t,he number of right moving zero modes 

(upper components). The index is given by [15]: 

Z(V) = Tr MZ MZ 

vv+ + ~2 - V’V + MZ > 
(23) 

where M2 is an arbitrary constant. We will find it most convenient to calculate the index 

with M2 + 00. A straightforward calculation shows that 

VV’ = (-0’ + jg141* + e’A”)I - 2ieo3(A:3, + ALa,) + eFl, + C (2.9a) 

V’V = (-0’ + lgl# + e*A’*)I - 2ieo3(A:& + ALa,) - eFl, + 6 (2.9b) 

where 

D& = (a, - 2ieAi)4, and D&4* = (I?, + ?&A&h*. F o 11 owing Weinberg we expand the 

terms in the trace: 

lim 
MS M2 

MZ-m ‘DV+ $ A/l” = c--v2 + lgl# + My* 
9 

+ (-v* + lg5,2 + M2)2 L 

M2 

(-v* + lgl# + A32 + . 
(2.11) 

where L = -2ieo’(A:a, + Aka,) + e2A2 + eF12 + C. For M2/(VtV + MZ), one replaces 

in Eqn(2.11) L with t where i = -2ieu3(A:& + A’ya,) + e’A*I - eF;, + c. We find, 

using Eqn(2.3) that 

I = *Jjrn, 
-J 

82 4eFdx) M2 (~1 (-v2 : M212 Ix) (2.12) 

12 

Similar calculations show that the indices for ($,, n), (A,, &), and (A,, &) a,re -n, n, and 

--12 respectively. 

The derivation outlined above is valid only for Nielsen-Olesen strings where D*c+3 is 

exponentially damped away from the string. The analysis for a more general case where 



one requires that 004 fall off only as fast as l/ f r or r + 03 is more difficult, but leads 

to the result that Z = -& J d In4 = 11 [Is]. The results from the method outlined above 

agrees with this one for the Nielsen-Olesen string where Eqn(2.3) is valid. 

What have we learned from these calculations’? For n > 0, we lmowzthat the number 

of (a, l?) left moving zero modes minus the number of (Q, I) right moving zero modes is 

n. Similarly, the number of (A, A) right moving zero modes minus the number of (A, A) 

left moving zero modes is n. However, to determine the true number of zero modes in 

either case we must study the actual equations of motion. 

Consider again, the equations of motion for $2 and 7s. With the ansatz &(T,@) = 

ei’ns$(r) and ^l;(r,Q) = ei(m+n-l)Oy(r) we have 

& + > II, + g1f-l = 0 (2.13~~) 

( 
a -m+n-l+a r 

> 
y + g1f!b = 0 T 

Of the two solutions at infinity (4, y m e*glqr) only the solution c( e-g’s7 is xceptable. 

There are two solutions at the origin and some linear combination of these solutions will 

match the one acceptable solution at r + co. Therefore, we require that both solutions at 

the origin be regular. To be more explicit, we have, for T + 0, 

t/l = a,Frn + aZTm+n+P (2.14~~) 

y = a3TTn+n-l + a4r-m+P+l (2.14b) 

where ai .a4 are conskant coefficients and f(~) + 9 for r --t 0. p (> 0) depends 

on the details of the scalar potential and for the original Nielsen-Olesen vortex [14], p = 

In.]. We note that a(r) + 0 for r + 0 so that a in Eqn(2.13) ccan be neglected for the 

purpose of determining the number of acceptable solutions to the Dirac equations. For 

both Eqn(2.14a) and Eqn(2.14b) to be acceptable solutions at the origin, we require that 

0 2 m 2 1 - n. Therefore, for n > 0, there are n acceptable choices of m. Eqns(2.14) 

give two relations between the coefficients a, .a4 and the requirement of matching the 

solution at the origin to the solution at infinity places an additional constraint on the 

coefficients. The final parameter is fixed by normalization. It follows that there are n 

normalizable zero modes. These zero modes are effectively (1 + 1).dimensional massless 

fermions constrained to move along the string in the -z direction (left-movers). A similar 

analysis for (+I, n), (Xi, ai), and (X2,&) follows in exactly the same manner and one 

finds that there are n solutions (right-moving zero modes) for (Xi, 6,) and no norm&sable 

solutions for either (41, yi) or (Xs,&). The result of the index theorem together with the 
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fact that, t.here are no (&, n) zero modes tells us that the n zero modes found above ax 

all of t,he zero modes. Similarly, there are exactly n (X 1, 6,) zero modes (right movers). 

To summarize, we have learned that there are exactly IZ zero modes of the form: 

*= ( ol(z + $(r, 0) > 
* = 

( 
P(z - tp, 0) 

> 

r = cy(*+t;y(T, 8) ( > 
* = 

( 
DC, -opt, 0) 

> 
The effective (1 + 1).dimensional physics of the system described above will be dis- 

cussed in a later section. We now discuss the existence of zero modes for a more general 

La.grangian, and one that can be readily adapted to realistic models (see also ref. 16). 

As before, we consider a model with 4 left-handed spinors U?, r, A, and A though now the 

fermions can each carry chxge under more than one U( 1)’ symmetry. The Yukawa terms 

in the model are assumed to be of the form 

Lyuliawa = -i [&‘lT + &AA + &‘I’A + ei’&I?A] (2.16) 

where 41, 42, 4s and $4 are complex scalar fields that can acquire VEVs and E is a CP 

violating phase. Coupling constants have been absorbed into the definition of the scalar 

fields. A cosmic string exists when at least one of the fields acquires a VEV that has a 

winding number. In general, one has pi = fi(p)einj8 where the n; are integers and at 

least one of the n; is non-zero. The case discussed above corresponds to (&) = (4;) # 0, 

(4s) = (44) = 0, and IZ~ = --nz = n. Eqn(2.16) IS o course invariant under the gauge f 

group for the model. In what follows, g will refer to the U(1)’ factors that are broken. 

q(g, X) will denote g’th charge of the field X. It follows that, for example: 

4(g1 44 + 4(9, *k) + 49, 9 = 0. (2.17) 

The analysis of this model closely follows our previous discussion of Witten’s model 

though here, the Dirac operator is a 4 x 4 matrix. We begin by assuming a zero mode 

ansatz for the fermions: 
Bl(Z -tPl(T, 0) 

Pz(z + @2(7-, 0) 
(2.18a) 

L\ = Pl(Z --tMr, 4 
( Pz(z + t)Jar, 0) 

(2.18.b) 

and Eqns(2.6) for Q a.nd r. With this ansatz, the equations for the lower components 

separate from the equations for the upper components. For the lower components, we 
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have that ‘DV, = 0 where 

V= V= 

43 0 42 Dt 
and 

(2.19) 

(2.20) 

In these equations, D*& = (a* + C,iq(g, @)A+(g))$? etc. where A,,(g) is the gauge 

field for the g’th U(1)’ factor and A+(g) = A%(g) f iA,( As before, the Dirac equation 

for the upper components is D$ = 0 where VI = ($1, y;, X1, 6;). 

We now derive the index of the Dirac operator Eqn(2.19) for the simple case where 

the string is a Nielsen-Olesen type string. For a Nielsen-Olesen-type string, if & acquires 

a non-zero VEV, then De& + 0 for r -+ co. This implies that 

ni - c 4% 4iM7) = 0 (2.21) 

9 

where iA* -+ +z*” a(g)/r for T -+ cx) and a(g) is a constant. [This equation is of 

course meaningless if (~$i) = 0.1 Eqns(2.21) can actually place a constraint on the allowed 

winding numbers for the scalar fields. For example, if there is only one U(1)’ factor that 

is broken, but folu scalars that a.cquire non-zero VEVs, then 

n1 n2 n3 n4 

dY? 41) = &7> 42) = Q(S> 43) = 447, 44) 
(2.22) 

in order for the string to be a Nielsen-Olesen string. For a Nielsen-Olesen string, we see 

that: 

(2.23) 

= - 2?rni 

where Fl2(g) = &A,(g) - $A&). 

The calculation of the index proceeds as before. Again, we make use of the fact that 

we are dealing with a NielsenOlesen string where the covariant derivatives of the scalars 
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that enter into the expressions for VVi and VtV a,re exponentially damped outside the 

string. It is straightforwwd to show that 

(2.24) 

From Eqn(2.17) [and three similar equations] it follows that: 

-2 C 45 w = 49, dd + 49, 44 + 4b 44 + d7, 44. 
X=‘&,F,A.A 

(2.25) 

Using this and Eqn(2.21) we see that 

1 
1 = $n, + 7?,2 + n3 + n*). (2.26) 

This is the index for the class of models described by the Lagrangian Eqn(2.16) given that 

one has a Nielsen-Olesen string. Though this appears to be a fairly restrictive class of 

models, we shall see in the next section, that our results are directly applicable to some 

‘realistic’ examples. Furthermore, it should be easy to generalize the methods outlined 

here to a broader class of models. 

As before, we note that an index calculation such as Eqn(2.26) contains only partial 

information concerning the number of zero modes for a Dirac opemtor. We now attempt 

to explicitly construct solutions to the Dirac equations,for the model. As before, we 

investigate the possible solutions at the origin and at infinity. The Dirac equations for the 

model sue: 

’ ,--ie (a, - ia,) fle-inlo 0 .f3e- 
in38 

f1e 
inlO e~~(a,++) ,Zf fqe1”48 0 

0 e-‘ffqe- in48 e-i0 (a, - ias) fze- 
in28 

f3e 
in3.9 0 f2e 

in28 
\ 2s (& + y&l) 

\ I i, 2 ’ 

24 
= 0. 

x2 

’ f-2 ’ 

(2.27) 

[Aga.in, we note that the gauge fields are irrelevant for counting solutions at either r + 0 or 

r -+ cc and so we have omitted them from the above equation.] -4 separation of variables 

is possible only when 

?I1 + 722 - 7l3 - 114 = 0 (2.28) 

and we now consider this case. It is interesting and important to note that all Nielsen- 

Olesen strings satisfy Eqn(2.25); i.e., using Eqn(2.17) plus three similar equations and 
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Eqn(2.21) we can show that Eqn(2.28) is satisfied. Therefore, all results derived below 

should agree with the index calculation above though the results below are in principle 

applicable to a more general class of cosmic strings. 

With the ansatz: 

&(1., 8) = PQ~(T) y;(r, 0) = e+r+nl-wA,(l.) 

X2(?, 0) = ,i(m+m-n4)O~(r) 6;(r> 0) = ei(m+n,-1)@6(r) (2.29) 

we have, for Eqns(2.27) 

’ (% + :) fl 0 f3 

fl (a, - “‘y-1) eiCf4 0 

0 eCtf f4 m+n, -"., car + r ) f2 

53 0 f2 car- 
VI+TLs--l 

r ) 

For r --t cc there are four solutions: 

4, y, A, 6 cx ektr, eke’, em”+‘, e--n-r 

Here, 

Kif = i(F f [F2 - 4R]1'2) 

‘*’ 

Y 

x 
= 0. (2.30) 

\6/ 

(2.31) 

(2.32) 

where F = 17: + 175 + $ + 7742 and a = (nT$ - 2~71~2~l3174 cos E + r$$) In general, two 

and only two of these solutions will be acceptable. In order to have a single norm&able 

solution one requires three acceptable solutions at the origin. The most general solution 

at the origin would then have three arbitrary constants. Matching this solution to an 

acceptable solution at r + 00 places two constraints on these constants. Normalization 

then completely fixes the solution. [Four acceptAle solutions n,t the origin would lead to a 

one-parameter family of normalizable solutions, (i.e., an infinite number of solutions) while 

only two acceptable solutions at the origin will not in general be adequate for matching.] 

The requirement that three solutions at the origin be regular implies that of the four 

conditions: 

Vl<O m + n1- 12 0 

m + n, - Rq 5 0 m + 123 - 12 0 (2.33) 

three must be satisfied. 

Let us now consider some specific examples. 

Case 1: 721 = --nz = 71, 7x3 = nq = 0 

12 



In this case, the index is zero. Furthermore, we see that only two of the four conditions 

in Eqns(2.33) can be satisfied with a single choice of m and we conclude that there are no 

normalizable zero modes. However, this conclusion is based on the assumptiou that all of 

the VEVs of the scalars be non zero. If, for example, ($3) = (&) = 0 then one is back 

to the Witten string studied in the beginning of the section and in this case, there are n 

normalizable solutions with yz = Sz = 0. Here, the two regular solutions at the origin have 

matched on to one of the acceptable solutions at infinity. [The index is still zero owing to 

the fact that there are now n normalizable solutions to D'V = O]. However, when ($3) # 0 

and/or (44) # 0, this type of matching does not work, and we conclude that there are no 

zero modes. 

Case 2: RI = 124 = 71, 7x2 = n3 = 0 

Here, the index is n and for R > 0 this tells us that there are at least n zero modes. 

With 1 - 1~ < m 5 0 we see that three of the conditions in Eqns(2.33) a.re satisfied and we 

conclude that for n > 0, there are exactly n zero modes. Furthermore, an analysis of the 

equations of motion reveals that there are no normalizable solutions to VtV = 0. This, 

together with the index theorem tells us that there are exactly n left moving zero modes 

of the form 

* = ( a(2 + t&v, B) 1 
* = a(z +&r: e) ( > 

r = > 
* = > (2.34) 

and that these are the only zero modes. 

III Superconductivity and Massive Bound States 

In Section II we studied the existence of zero modes for a class of models involving four 

Weyl spinors and four complex scalar fields. Given a certain relation among the winding 

numbers of the scalars, Eqn(2.2S), we found that the number of zero modes could be best 

determined by directly studying the equations of motion for the fermions. Consistency 

and completeness are checked by calculating the index of the appropriate Dirac operator. 

In this section, we discuss the effective (1 + I)-dimensional theory for the various cases 

considered in Section II. 

An effective Lagrangian for the superconducting string discussed at the beginning of 

Section II can be written and has been studied by a number of authors. Superconductivity 

can be understood (1) from the bosonized equations of motion for the electric current [I]; 

(2) from the anomaly equations for the (I+ 1).dimensional fermions [17]; and (3) from 

the presence of a mixed anomaly in the full (3 + 1).dimensional theory [7]. [By mixed 
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anomaly, we mean that aPj,, N E,~~x~F~~~F,\~ where .F,,, is the field strength tensor for 

ordinary electromagnetism and F:,, is the field strength tensor for the U(1)’ gauge group 

that is broken. In the present discussion, we will follow the second of these approaches. 

We begin by reviewing the derivation of superconductivity for Witten’s original model. 

Recall that for n > 0 we have n right moving and n left moving zero modes of the form 

given in Eqn(2.17). [The generalization to the case where there a,re more thrm one species 

of right or left movers is straightforward. In the equations that follow, one would simply 

sum over the different species that are trapped as zero modes on the string. To keep the 

notation simple, we ignore this complication in the present discussion.] 

We assume that only the zero modes contribute to the low energy (1 + I)-dimensional 

effective Lsgrangi&r, L,ff. fZc,ff is found by integrating t,he full (3 -+ 1).dimcusional La- 

grangian, Eqn(2.4), over r and 0: 

L eff = i: [icuz. t) [ao - 8, + ie(Ao - A+& t) 
m=, 

+ iP;(z, t) [ao + a3 + +Ao + A3)]/3&, t)] 

(3.1) 

Here, m labels the different Jackiw-Rossi zero modes by, say their angular momentum 

[though this m is not precisely the same m as in Eqn(2.13)]. In deriving Eqn(3.1) we have 

assumed proper normalization for the zero modes. 

Consider the total electric current for the fermions, J’ = 6Le:,ff/6A; z (p, J) where 

P = - i: [4& +&&, t) + io:n(? tNn(~, t,] 
rn=l 

(3.2~) 

(3.2b) 

The divergence of this current is zero because the contributions from (\I,, I’) and (A, A) 

exactly cancel. From Eqn(l.1) we see that 

(a0 - a3)cy;(z, t)&Jz, t) = -$ (3.3a) 

(a0 + a,)p;(z, t)/L(z, t) = $E 
(no sum on m) so that 

a,p + as.7 = 0 (3.4) 

However, it also follows that 

a,.7 + a,p = -5 
77 
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In a c,onstant electric field, dJ/dt is just proportional to the electric field and furthermore, 

when the field is turned off the current persists. These results imply that the string is 

superconducting. 

Superconductivity has a simple physical interpretation in terms of particles and holes 

in the Dirac sea [1,17]. In the absence of an electric field, the negative energy states of 

right and left movers are filled while positive energy states a.re empty (Fig. 1). In an 

applied electric field, the fermi level of the left movers is shifted upwa,rd while the fermi 

level of the right movers is shifted downward. The total numbers of right and left movers 

are separately conserved as is required by the axial symmetry of the model. However, at 

the top of the Dirac sea, where one actually measures the current, the shift in fermi levels 

amounts to (has the appearance of) negative energy particles (in this case, right movers) 

being excited into positive energy states with opposite chirality (here, left moving states). 

This is schematically shown in Fig. 2. The result is a net electric current and this current 

can relax only when an electric field is applied in the opposite direction. 

As discussed by Witten, we note that the string cannot build up charge indefinitely. 

Eventually, the zero modes gain enough energy to move off the string as massive fermions. 

This transition is shown in Fig 3. The energy at which the transition can first occur is 

given by the mass of the fermions off the string and is 917 for the superconducting string 

of Eqn(2.4). In the four fermion models, this energy is given by min.(]n+l, ]K-]) = /K-] 

(cf. Eqns(2.31-2)). Once the energy of the zero modes becomes greater than ]K-], bound 

state solutions to the Dirac equations no longer exist. If M denotes the energy at which 

the fermions can first move off the string, then the maximum or critica,l current is given 

by PI 
J rl M 

mar = -- 
e 1 Gel; 

4 x lo4 Amps. (3.6) 

With 10’s GeV fermions (GUT scale) for example, the currents can be as large as 4 x 

1020 Amps. 

In Case 2 of Section II we found that there were n left moving zero modes of the form 

given in Eqn(2.34). These zero modes alone would lead to an uncanceled anomaly on 

the string. Anomalous superconductivity will be discussed in Section V. Here, we assume 

that there are also right moving modes such that Eqn(l.2) is satisfied. [As we shall see 

in the next section, this naturally occurs in some GUT based models.] The analysis now 

proceeds in exactly the same manner as in Witten’s model and we conclude that the string 

is superconducting. 

We now discuss the behavior of the string in the absence of zero modes. Qualitatively, 

this case is easy to understand. Suppose we introduce into Witten’s model, small couplings 

between right and left movers. This is Case 1 of Section II with ((&jr ($4)) < ((&), ($2)). 
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We have seen that there are no zero modes in the presence of these couplings. However, we 

expect bound state solutions with a non-zero groundstate energy (or effective mass) that 

is determined by the interaction terms in the Lagrangian [i.e., by ](&)I and ](44)]]. This 

mass induces a gap between positive and negative energy levels as in Fig. 4. In order for 

a current to be excited, the energy due to the applied electric field must be greater than 

this mass scale. Let m denote this mass, B the field strength of some cosmic magnetic 

field, and v the velocity of the string relative to the B-field. Astrophysically interesting 

currents can be generating only if [s] 

v ( 1 ;u.i.s) (g)’ 2 200. (3.7) 

Since galactic magnetic fields are typically O(lO-‘) Gauss and intergalactic fields are at 

least a few orders of magnitude smaller than this, we see that the inequality Eqn(3.7) will 

not be satisfied for most reasonable choices of m. 

A detailed and quantitative analysis of Case 1 in its most general form is very difficult. 

Bowever, we can gain some insight into how one can approach this problem by studying 

the very simple case where 41 = 4; and 4s = 44 = im. This model was analyzed in ref.[S] 

using the bosonized equations of motion. Here, we directly study the effective (1 + l)- 

dimensional theory for the fermions without resorting to bosonization. 

For the case at hand, there are indeed bound state solutions [S]. These solutions have 

exactly the same form as in Eqn(2.15) but now 

[a; - a,’ + m2)]a(z, t) = 0 (3.&L) 

[a,3 - a,” + my]p(z, t) = 0 (3.Sb). 

The effective Lagrangian has, in addition to the kinetic energy terms (Eqn(3.1)), the mass 

terms: 

AL eff = m[a(z, q/3(2, t) + kc.1 (3.9) 

This is precisely the Lagrangian studied in a rather different context in ref. [lS]. These 

authors calculate the creation of particle-antiparticle pairs (or equivalently, the production 

of electric current) in an external electric field using the Bogoliubov method. Here, we 

review their calculation a,nd discuss their results as they apply to superconduct.ing strings. 

Consider the case where an electric field is applied for a finite period of time, i.e., the 

electromagnetic potential A3 = A(t) is given by 

0 t<o 
A(t) = A(t) 0 <t < I- 

Al t<r 
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The t\vo componeut: (l+l)-dimensional spinor ~b = is espandecl in the following 

way: 

~-k(t)&1 (3.11) 

where u and u are spinors that satisfy the following Dirac equations: 

ia&& = [o’(k - A(t)) - c&n] 2~~ (3.12~~) 

i&v-k = [c?(k - A(t)) - &I] v-k. (3.12b) 

For t < 0, u and u correspond to positive and negative energy plane-wave solutions which 

we can write as u;(t) = ~?‘x~zL~ and 2rok(t) = erWLfuTk where WI, = v’m. The true 

vacuum for t < 0 is the state in which all of the negative energy states are filled. For t > r, 

the solutions have the form: 

w(t) = Av$!&) + Bm.(l;--eA,)(t) (3.13a) 

Q(t) = Ckll~A&&) + m-(k-do)(t) (3.13b) 

where “;meA .(t) and uO~~-.~ ,(t) are positive and negative energy plane-wave solutions 0 
for the true vacuum with t > T. Ak. Dk are known as Bogoliubov coefficients [see, for 

example, ref. [19]]. Non-zero Bk and Dk imply that negative energy particles have been 

excited into positive energy states. Specifically, IBcI * is the probability that a particle 

with momentum k has been shifted up to a positive energy level. The total electric current 

generated can be expressed in terms of the Bogoliubov coefficients and we refer the reader 

to ref. [IS] for the details of this calculation. 

The results from this method agree with the analysis found previously using the 

bosonized equations of motion [S] as well as the qualitative discussion presented above. 

There is a current generated if and only if the energy in the electric field is greater than 

the mass m (sudden approximation in ref. [IS]) w ereas there is no current generated when h 

the electric field is much smaller than this mass (adiabatic approximation of ref. [18]). 

The Bogoliubov method can in principle be applied to the case where the VEVs of 

the scalars are arbitrary. However, this case is a computational nightmare. One must 

first study the Dirac equations in order to determine the groundstate energy of the bound 

state solutions. [This amounts to finding the eigenvalues of an S x 8 matrix equation!] 

Concentrating on the lowest energy solution, one would then derive an effective (1 + l)- 

dimensional Lagrangian. As before, the functions are then expanded in terms of Bogoliubov 

coefficients and the coefficients are computed in a specified electric field. Though the exact 

value of the effective mass for the lowest energy boundstates can be determined only by 
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solving the Dirac equations for the model, we expect that the groundstate energy of the 

lowest bound state will be at least O[min((&), (d4)) x coupliny constant]. This energy 

is the mass that enters into a formula similar to Eqn(3.7). The inequality Eqn.(3.7) will 

not be satisfied (and in fact misses by many orders of magnitude) for most reasonable 

choices of m and B [e.g., m > 1 el; and B 5 10e6 Gauss] and therefore in most cases, it 

is possible to determine that in the absence of zero modes on the string, superconducting 

currents will not be generated. 

IV An Eg Example 

In Section II, we described a method for determining the number of zero modes in a 

certain class of fermion-vortex systems. We then discussed the effective (l+ 1).dimensional 

theory for systems with zero modes and then for ones with massive bound states but no zero 

modes and found that astrophysically interesting currents were generated only when zero 

modes were present. In this section we apply these results to a, specific particle physics 

model based on the gauge group Es. [EB is introduced to provide a set of scalars and 

fermions within the framework of a viable GUTS theory that is interesting in terms of the 

possible fermion-vortex systems. The results apply equally well to SU(5) x U(l)” x U(1) 

and SO(10) x U(l)‘.] 

Superconducting strings in an E6 model were first considered by Witten [l]. His 

analysis was a proof of existence one in which he showed that given cosmic strings formed 

from certain E6 scalars and certain E,j fermions, superconducting strings can arise. Here 

we consider a more complete set of fields found in an Eg based GUT. As we shall see, both 

superconducting and nonsuperconducting strings (Case 1 and Case 2 of Section II) arise. 

E6 is broken to O(10) x U(1)’ by a Higgs field in the adjoint representation of Es 

(i.e., the &s) and to SU(5) x U(l)’ x U(l)” by a Higgs field in the adjoint of O(10) 

(i.e., the 445). The remaining Higgs fields and all of the fermions t,hat will be consider 

are contained in the 27 of ES. We first consider the electrically neutral scalars in the 

model, &, i = 1 Y 5. The charge assignments for the scalars are given in Table II. 

[To make contact with notation found elsewhere, we note that the scalars can also be 

labeled by the letter used for the fermion field that has the same quantum numbers, i.e., 

rjl z n, & E N, 43 = YE, 44 = NE, &, = v.] We assume that & and 42 obtain large 

(2 300GeV) VEVs and break V(1)’ and V(l)“. The symmetry breaking gives rise to 

almost stable strings. The strings can actually decay through the formation of monopole- 

antimonopole pairs. However, if the scale at which the U( 1)’ and V( 1)” are broken is much 

less (by a factor of 10 or so) than the scale at which E6 is broken to SU(5) x U(l)’ x U(l)” 

then the decay rate is so slow that the strings are effectively stable [l]. [In any case, our 
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purpose here is not to construct a complete and detailed GUT based cosmology, but to 

study superconducting strings in an interesting gauge theory.] The VEVs of 43, 44, and 4s 

are 5 O(Mw). Actually, (45) may be zero but for now, let us assume that (45) = O(Mw). 

There are then five neutral scalars tha.t acquire VEVs and effectively three magnetic U( 1) 

fluxes: U(l)‘, U(l)“, and a flux T of electroweak fields that c<an be present in the core of 

any given string. [.4s discussed in [l] th e core radii of the different fluxes are not equal but 

we can ignore this fact in the present discussion.] Put another way, there are three gauge 

fields that enter into the covariant derivatives for the scalars when we construct vortex 

solutions. For example, 

iDB& = id, + ‘Ai, + 2Ai - T,,. (4.1) 

AS usual, 4 -+ qiei”‘“,Ak, ---t -cY’/T, .4: --t -d’/r, ~md. To -+ -t/T for r + cu. In the 

present discussion, we will assume that we have Nielsen-Olesen strings. For Nielsen-Olesen 

strings, D&i -+ 0 and, together with Eqn(4.1), this implies tha,t 

723 + 2u’ + 201” - t = 0 (4.2) 

With ni fixed but arbitrary, Eqn(4.2) and the corresponding equations for the other scalars 

are simultaneous equations for cy’, o”, t. Clearly, by solving these equations we minimize 

the energy of the string as this eliminates long range (log-infinite) contributions to the 

mass per unit length. However, there are five equations similar to Eqn(4.2) (one for each 

scalar) for the three unknowns (o ,o” , t) and in general one cannot find a consistent 

solution. 

If we impose the conditions 

RI + 123 + 124 = 0 (4.3s) 

?I* + nq + 7x5 = 0 (4.3b) 

then there will be a unique choice for (a’, CY”, t) such that Eqn(4.2) and the corresponding 

equations for the other scalars are satisfied. In particular, one has 

cy’ T.2 
a” 

121 - 4ns 3ni - 
t 

2ns + 5723 = = = 
4 2. 

5 (4.4) 

Strings whose winding numbers satisfy Eqns(4.3) h ave magnetic fluxes given by Eqn(4.4) 

and are Nielsen-Olesen vortices. 

There is good theoretical motivation for Eqns(4.3). In general, one expects the terms 

414344 and &44& to be present in the scalar potential, either as terms in the original 

Lagrangian, or as induced terms in some effective Lagrangian. Minimizing these terms 
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leads to the conditions Eqns(4.3). We note that these are the only trilinear couplings 

allowed given the charge assignments in Table II. As for higher order terms, only terms 

that cannot be written as an absolute square of scalar fields can affect the phases and hence 

winding numbers of the fields [e.g., l&+21’ cannot affect the winding numbers of either 

4, or I&.]. Moreover, minimizing the other higher order terms that might be present such 

as &c$;&& is already achieved by minimizing the two trilinears. Indeed, the counting 

of solutions makes sense! There are five equations (Eqn(4.2) etc.), three unknowns, and 

two constraints. The questions of whether or not the trilinear terms are present (and 

important) in the potential and whether or not Eqns(4.3) are satisfied are interesting in 

their own right and have been addressed in a previous paper [9]. For the present discussion 

we will make the assumption that these conditions are in fact satisfied so that we have 

Nielsen-Olesen strings. 

The charged fermions we consider are in the 27 of E6 and their charges are given in 

Table II. It is easy to verify that the set of fermions is free of triangle anomalies such as 

QQA’, QQA”, QA’A”, etc. The Yukawa potential consists of the terms 

L = &EEc + &EC + &eec + &,ecE 
(4.5) 

+ &hhc + 4dd + &MC + 4sh’d + &uuc 

where the coupling constants are implicit. The Dirac equations for the fermions separate 

into three groups of coupled equations; one for the leptons, one for the d and h quarks, 

and one for the u quarks. The Dirac equations for the u quarks are essentially the same 

as those considered by Jackiw and Rossi and by Weinberg. If ~$4 has winding number n4 

then there are In41 u-quark zero modes. The Dirac equations for the leptons are the same 

(save only the values of the coupling constants) as those and for the d and Il. qua,rks and 

are precisely of the form studied in Section II (cf. Eqn(2.16)) so that the application of 

our previous results is immediate. 

Presently, we consider what we shall refer to as minimal strings. These are Nielsen- 

Olesen strings [i.e., strings whose winding numbers satisfy Eqns(4.3)] that have no more 

than three fields that wind. We view these as the most likely strings to form as they 

involve the simplest Higgs configurations consistent with the requirement that they be 

Nielsen-Olesen vortices. The extension of this analysis to other Nielsen-Olesen strings is 

straightforward. The winding numbers for the minimal strings are listed in Table III. 

The zero modes in each of these cases are easily found using the results in Section II. For 

example, for strings A and D (case 1 of section II) there are no zero modes and hence no 

superconductivity. For strings B, C, and E, there are left moving zero modes composed 

of (e, e’,E, EC) and (d, d’, h, h”) [cf. Eqn(2.34)] and a right moving zero mode for 

(u, uc) (Fig. 5). It is easy to check that the total axial vector anomaly for these zero 
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modes is zero (i.e., Eqn(l.1) is satisfied: 

right movers 

(4.6) 

where the factor of 3 for the quxks comes from summing over color indices. This is to be 

expected of the (1 + 1).dimensional theory that is the effective theory for a. Nielsen-Olesen 

string when the parent theory is anomaly free. 

As mentioned above, (4s) may be zero. In this case, there are four neutral scalars that 

acquire VEVs and therefore four equations of the form Eqn(4.2). Now, only Eqn(4.3a) 

is necesswy to insure a Nielsen-Olesen vortex [Eqn(4.315) no longer makes sense!] Again, 

when we consider the minimal strings, we see that .il and D have no zero modes while 

B, C, and E still have zero modes. However, the left movers in string C and E a.re now 

pure E and h particles rather than admixtures of (E, e) and (d, 12). 

Let us compare our results with those found by Witten [l]. Witten assumed that only 

41, 43, and #Q acquired VEVs [i.e., he did not consider the breaking of V(l)“.] He finds 

two superconducting strings (cf. his Fig. ll), one with E and !t particles as left movers 

and u quarks as right movers and the other with E and h as left movers and d and e 

as right movers. The first case is akin to our strings B and C. Though we have also 

found that the strings are superconducting, we see that the left movers may now involve 

ordinary particles [either string B or string C with (4s) # 01. Witten’s second case is akin 

to our string A and here we see that the strings do not superconduct clue to the presence 

of additional neutral scalars that due not wind in the presence of the vortex. 

V. Anomalous Supercouductivity 

In this section we discuss anomalous superconductivity in frustrated cosmic strings. 

For frustrated strings there can be an uncanceled contribution to the axial vector anomaly 

in the effective (1 + 1).dimensional theory (i.e., Eqn(l.2) does not hold) even though the 

underlying (3 + l)-dimensional theory is anomaly free. This is in contrast to the Nielsen- 

Olesen vortex where the effective theory on the string is always anomaly free if the parent 

theory is anomaly free. An uncanceled anomaly indicates that the electric charge on the 

string is not conserved. The charge that appears on the string can be accounted for by 

an inflow of charge (a radially directed current) from the world outside the string. This 

current is clue to the interaction of the fermions with the neutral scalars in the model and 

is very simi1a.r to the effect studied by Callen and Harvey [lo] for the axion string. 

Consider again Witten’s U( 1) x V( 1)’ model (Eqn(2.4)) but now with (q, r) coupling 

to 41 and (A, A) coupling to $& where $1 and 42 are independent complex scalar fields. 

The charge assignments for the model are given in Table IV. 
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We first discuss the various string configurations possible. We assume that after sym- 

metry breaking, 41 and ~$2 acquire notI-zero VEVs. The phases of d, and C& at the time 

of symmetry breaking are correlated only within distances less than t,he correla.tion length 

for the phase transition. As the fields evolve, much of the initial variations in the fields die 

out. However, vortices remain. For a given vortex, $1 = fi(r)e”n10 and & = f2(r)ei”ZB. 

As usual, for T -+ 00, fl(r) + 71, fz + ~2, and illg + -CY/T where a is a constant. The 

mass per unit length p of the string is given by 

c1= J ( d*r IDA2 + IDp4212 + V(h, 42)) (5.1) 

where V(&, 42) is the (U(l)‘-invariant) scalar potential, D,,& = (13, + isAL)dl, and 

D,,& = (CJ,, - isAL)&. For T + 00, there is a contribution to p due to the kinetic energy 

terms that approaches [(,I%~ - ~a)‘$ + (1x2 + scx)‘$] J&/T. When n1 = -nz = sty 

this long-range contribution to the mass vanishes so that the mass is loc&ed in the core 

of the string and in fact p N (VT + 7:). H owever, for 121 # -122, there is a contribution 

to p of the form [( n1 - SCY)‘$ + (n2 + sol)‘$] ln(R/r,) where R is an astrophysical 

scale (either the typical size of a loop or the mean separation between strings) and r, 

is the core radius of the string. Energetically, the Nielsen-Olesen strings (those with 

7~1 = -nz) are clearly favored. However, strings form during a time when the phases 

of the different fields are not completely correlated and the Nielsen-Olesen configuration 

may not, at least initially, be realized. It seems that the most likely situation, at least for 

the initial field configuration, is one in which n,l = 1 and n2 = 0 as this is the simplest 

configuration possible; i.e., involves the least number of fields winding a,bout a given point. 

[Numerical simulations support this claim though work is still in progress [20].] The 

possibility that strings in alocal U( 1)’ theory might not be Nielsen-Olesen strings is referred 

to as frustration [11,21]. 

We now consider the fermions in the model. For nl > 0 (711 < 0) there are Inl( 

left-moving (right-moving) (@, l?)- zero modes. Similarly, for n2 > 0 (122 < 0) there are 

In2 I left-moving (right-moving) ( A1 A)- zero modes. The electric current 1” = (p, J) is 

therefore 

P = - J-R zg,,,,, [a fb(Z> t) + P*(% tvYZ> t,] (5.2~~) 

J= c 
J-R zero modes 

[w(+*(G t)4z> t) + w(nz)B*(Z> t)P(z, t) (5.2b). 

where sgn(z) = z/IzI. Here, cy(z, t) and /3(z, t) are the (2, t) parts of the zero mode 

solutions for (‘I!, l?) and (A, A) respectively. Suppose that there is a constant electric field 
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It follows that 

applied along the string so that Ji depends only on t. From Eqn(l.1) we see that 

2E 
g a*Ol = -Sync (5.3a) 

2 /3*p = --sgn(nz,g (5.3b) 

g = (m + n.g (5.4a) 

dJ 
- = -(IA + lb+g 
dt 

(5.4b) 

For the Nielsen-Olesm vortex (n,l = -n?), we recovrr OUT previous results (Eqns(3.4- 

5)). Eqn(5.4a) indicates that in the presence of an applied electric field, charge appears on 

the string at a rate of (121 + n2)e2E/2n. -4s we now demonstrate, the appearance of this 

charge can be accounted for by an inflow of charge from the world outside the string. 

It is convenient to rewrite the Lagrangian for the model in terms of the four-component 

Dirac spinors X and y: 

L = iA?'y" 
[ 
d,, + ieA, + 

( 
s + ; - ;y5) A;,] X 

+ i$+‘ 
[ 
E$ + ieA, + (s-+ ; + ;^i5) A;] Y 

+ glfi(r)ei-oKX + yzf~(r)e"~"~"yy 

(5.5) 

where 

(5.6) 

The electric current is 

Here we are using the chin1 representation for the y matrices. Namely 

> 
75 = (5.7) 

J” = e [Xy”X + jyy] (5.8) 

and the expectation value of this current far from the core of the string is found to be (see 

for e.g. ref. 10): 

(9 + n2)e2 
(J,‘) = 8x2 Ep”XKa”BF~~. (5.9) 

The calculation of Eqn(5.9) deserves some explanation. We have calculated (J,) using 

a point split procedure. To see how this works, consider a point split ‘gauge invaria.nt’ 
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definition of the quantity K“ = x~fi,Y: 

Iiyx + E/2,X - E/2) = 2(x + Ej2)y’exp &(Y)~Y” 
> 

x ercp 
{ 

i(7. + s/2 - y5s,2) J,+;:* A,( y !dgY) .U(z - E/2) 

(5.10) 

Here, E is small and we will let e2 + 0 (averaging over all directions of E) at the end of the 

calculation. Naively, li” 1s separately invariant, under the two tmnsformations: 

x 4 i = ,ieXx A, + xi, = A, + 3,x (5Sla) 

,x --i S = ei(r+s/2---i5s/2)X~y A; + ii; = A; + d,X (5.11b) 

However, Ii” itself cannot be a,ssociated with a proper electromagnetic current as a,Kp # 

0. Contributions to the divergence of li“ arise through the triangle anomalies that mix 

U(1) and U(1)’ vertices. These anomalies are exactly canceled by the corresponding 

anomalies for the current associated with y so that the full electric current, Eqn(5.S), 

is conserved. [Our choice of charges in Table IV was chosen so that this would be true!] 

To see this in more detail, and to see how one derives Eqn(5.9) we expand lip to fist 

order in E and k&e its vacuum expectation value: 

(Ii”) = Tr[(W tePA,(t) + i(r + ~/2)~~A~(cc))y@G(z - c/2, z + e/2)] 

+ ;Tr [PA;(z)y&G(z - e/2, s + e/2)] 
(5.12) 

where 

G(z - e/2, z + e/2) = (OIT$(z - e/2, + + e/z?)lo) (5.13) 

is the two point function and T denotes time ordering. G(s, y) can be written as an 

expansion in the interaction terms (see Fig. 6). For the U(1) and U(1)’ gauge fields, 

these are @A,, and (r + s/2 - yss/2)yJ‘A~. For the interaction of X with r$l we use the 

adiabatic approximation [22] valid far from the string. We expand $1(y) about the point 

z 

41(Y) = (w-i~~n~~ - 171) + Vl 
(5.14) 

= 71 + kY5(Y - ~)Xaxe(~) 

where 0(z) = 0. The interaction of X with 41 therefore splits into a mass term and an 

interaction term. 

There are many non-zero contributions to (K”). However, most of these are canceled 

by the corresponding diagrams for the current associated with y. For example, there are 
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two contributions to (1iJ’) that lead to terms proportional to ~““‘“Av(x)~~A’+.(x), one in 

the term Tr[yfiG(z - t/2, z + e/2)] coming from diagram e in Fig. 6 and the other in 

the term Tr(iePA,(z)y~G(z - c/2, z + e/2) coming from diagram c. The coefficient of 

this term is proportional to es/2 while the corresponding contribution from the y current 

has a coefficient proportional to -es/2. The uncanceled contributions to (Jfi) come from 

diagrams involving the scalar fields [e.g., diagram f of Fig. 61 and the calculation which 

follows closely calculations that appear elsewhere in the literature [10,23], leads directly to 

Eqn(5.9). 

From Eqn(5.9) we see that when a constant electric field is applied in the direction of 

the string, there is an inward radial current Jr = -(nl + n~)e2E/4rr2r that is precisely 

what is needed to account for the a,ppearance of charge on the string in Eqn(5.4a). 

One can in fact analytically solve Maxwell’s equatious with a source given by Eqn(5.9) 

for simple string and field configurations. This has been done for the axion string (1~1 = 

1, ~2 = 0) in the case where there is a charge and current present in the string but no 

applied fields [lo]. One finds that the charge and current on the string are screened by po- 

larization of the vacuum outside the string. The screening is such tha,t the charge (current) 

measured by an observer a distance R from an infinite straight string is (R/T~)-~‘/~~’ of 

the total charge (current) on the string. In the above expression r, is the core radius of 

the zero mode where T,, N A4 and M ( = 9~) is the mass of the fermion of the string. The 

screening is very weak as e2/4rrz N 0.002. For example, with M = lOI GeV (GUT scale 

zero modes) and R = one light year, only 20% of the charge is screened. To screen 90% 

of the charge, one would have to go a distance R N 10400 cm from the string! Presently, 

we solve Maxwells equations for arbitrary choices of n1 and n2. We also calculate (in 

a very rough way) the screening effects due to a conducting plasma for the case where 

(nl = 1, ~2 = 0) and find that screening due to plasma effects is much more dramatic. 

We begin by writing Maxwells equation with the source given by Eqn(5.9) in cylindrical 

coordinates and a,ssuming that the fields depend only on r and t. The relewmt equations 

3% -+ 
18 

at 
--7-E, 
T dr 

+! 

a‘% 
- at + +3B = p 5 

r 

where p = (nl + nz)e*/417’. The static solutions to the above equations are [12] 

E, = %(k)’ + +($-” 

Be = ? (5)” - F(k)-” 

(5.15) 

(5.16~~) 

(5.16b) 
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As before, 1‘, is the radius of the charge and current on the string. C* are determined 

by matching these solutions to the solutions at I’,. If p0 and J, are the (fixed) charge 

and current per unit length on the string, then it follows from Eqn(5.4) that p,/J, = 

-(w + m)/(lwl + 1~1). Er(ro) = po/’ XT, and Bs(ro) = J,/2nr, and we find that 

c+ = -Jo n1 +nz - I1211 - 11121 
4j7 ( In11 + bzl > 
Jo c- = -z 

( 

n1 + RZ + 11211 + llZzI 
lwl + 1~~21 > 

(5.17a) 

(5.17b) 

For the axion string (n1 = 1, 1x2 = 0) we recover the result in ref. [lo] that C+ = 

0, CL’= - Jo/%. For the superconducting cosmic string (17.1 = -122 = n), we find that 

C+ = -C- = J,/~T, E, = 0 and Be = Jon/x as expected for a neutral current carrying 

wire. 

For IZ~ > 0 and n2 < 0 (or n, < 0 and 1~2 > 0 ) we see thnt both C+ and C- are 

nowzero. This is a rather curious result. From Gauss’s law we find that the charge per unit 

length inside a cylinder of radius R increases as RI@1 and is therefore infkite for R --+ 00. 

This seemingly unphysical result should not concern us too much. Infinite global (or 

frustrated) strings have a mass per unit length that diverges logarithmically. Furthermore, 

the energy per unit length in the electromagnetic field outside an infinite wire is also log- 

divergent. It is in fact the magnetic field Bs that gives rise to the polarization charge (cf. 

Eqns(5.14)). The infinities a.ssociated with global strings are cut off by introducing some 

astrophysical scale R that is either the radius of a loop or half the distance to a neighboring 

string. We also note that the dependence of charge per unit length on R is exceedingly 

weak (p = (nl + n2)/400). Suppose that in the present Universe, we have one string per 

Hubble volume. With T, = ( 10’6GeV)-’ and n1 = 2, 122 = -1, the charge per unit length 

as measured by an observer 6000 Mpc from the string is actually about 20% of the charge 

as detected a.t R = rO. 

In the above discussion, we assumed that the strings were in vacuum. However, the 

environment of a cosmic string is typically some electrically conducting plasma such as 

the interstellar or intergalactic medium. One therefore expects a charged string to attract 

oppositely charged particles that in turn screen the electric field of the string. Here we 

present a simplified discussion of how this effect might be realized. A detailed study of a 

charged, current carrying string in a conducting plasma is very difficult and is beyond the 

scope of the present work. In particular, we will regard the string as static though typically 

the string moves at some fraction of order O(0.5) of the speed of light relative to the plasma. 

The dynamical problem may actually be very different from the one considered here. 

[Electrically neutral superconducting strings in astrophysical plasmas were considered in 

ref. 2 and in ref. 24.1 
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As an interesting prelude to our discussion of plasma effects, we consider the motion 

of a test charge outside an infinite, straight, and static string. We consider the case where 

nr = 1 and 1~s = 0 so that there are only left moving zero modes and p0 = -Jo. Outside 

the string, the electromagnetic fields are 

E, = -Bs = 
& (3” 

For definiteness, we take p0 > 0 so that the electric field points away from the string. The 

equations of motion for a particle of mass m and charge Q in the field of the string ase: 

ClPr 
- = n(r)(l + v,) 

dP0 
dt 

- = 0 
dt 

dP- -.2= -4Tbr 
dU 

dt 
- = a(r)?& 
dt 

(5.19) 

Here, Giis the ordinary velocity of the test particle, (L’, 3 = my(1, G), y = (1 - I.G]‘)-r’s, 

and o(r) = qE,/m. Qualitatively, a particle’s motion is easy to understand. Consider 

particles that start at rest some distance from the string. Positively charged particles 

(hereafter called ions) are accelerated away from the string while negatively chzarged par- 

ticles (electrons) move towards the string. With a radial velocity, both the electrons and 

the ions are accelerated in the --t direction (this is just the Hall effect). [i\ctually, from 

the last two of Eqns(5.1S) we find that l/y = C(1 +vz) where C is an integration constant 

determined by the initial conditions. For the case where initially tjr = U, = zig = 0, we find 

that vz - U, = v2/2.] We have solved Eqns(5.1S) numerically and find that the motion of 

an electron is periodic in the plane perpendicular to the string while its velocity in the z 

direction is always less than or equal to zero. The trajectory of an electron is shown in 

Fig. 7. 

Recall that in vacuum, a positively charged string is surrounded by a negative vacuum 

polarization charge. Roughly speaking, we can say that with free charges present, the 

positive ions neutralize this vacuum charge while the electrons screen the string itself. 

Also, the motion of the electron along the string screens the current. 

We now attempt to determine the screening radius, i.e., the distance at which the 

electric field of the string is screened. We assume that one has a thermal distribution 

of electrons at some temperature T and further assume that the thermal energy of the 

electrons is greater than the electrosta.tic energy. Our derivation then closely follows the 

arguments of Debye and Hiickel for electrostatic screening. The electrostatic potential @ 

is determined by solving the Poisson equation for the string and electrons: 

VQ = - &6(F) - en, (5.20) 
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where 1z, is the average electron number density. elz, [e- e*P’ - I] N e’n,Q/T is the excess 

charge density in a region where the electrostatic potential is a. Both the Laplacian and 

the delta function in the above equation a,re two-dimensional owing to the cylindrical 

symmetry in the problem. [As we shall see, the screening radius is quite small so that a 

curved string or loop can be considered straight for the present discussion.] The solution 

to the above equation is @ = p,,K,(r;~r) where no = (e’n,/T)” and K,, is a modified 

Bessel function. In the interstellar medium, R, = lo-’ cmm3 and T = 100 deg I< so that 

KD’ = lo3 cm. In the intergalactic medium, n, = 10V5 cm.-s and T = 10’ deg I< so that 

li$ = 10s cm. [This astrophysical data is found in ref. 25.1 Close to the string, where 

tcgl’ < 1, Q, N p,ln(r) [as it should be]. Far from the string, @ Y pOeVKD’/(h-or)‘/‘. 

Therefore ~0’ sets the scale for the electrostatic screening and is in fact just the Debye 

screening length. For example, 90% of the charge is screened at a distance of 2.3rcD’. 

Clearly, plasma effects are much more efficient at screening the charge on an anomalous 

string than the vacuum polarization effects discussed at the beginning of this section. 

VI Summary and Conclusions 

In this paper, we have focused, for the most part, on two aspects of fermion-vortex sys- 

tems that may be relevant in determining whether or not superconducting cosmic strings 

occur in realistic models. First, we have shown that the existence of zero modes is es- 

sential for superconductivity as (almost) any effective mass for the bound state fermions 

inhibits the generation of an electric current. The exktence of zero modes can best be 

determined by directly studying the Dirac equations for the fermions in the field of a 

vortex though additional or complimentary information can be obtained by constructing 

an index theorem. However, neither method seems to be directly applicable to the most 

general fermion-vortex system. In particular, we have not been able to determine whether 

or not zero modes exist for frustrated strings in the four fermion systems considered in 

Section II (e.g., the model given by Eqn(2.16) with ~2~ = 1 and 122 = n3 = Q = 0). 

We have also studied some properties of frustrated or anomalous superconducting 

strings. These strings are superconducting in the sense that in the absence of an external 

electric field, currents persist. They are anomalous in that the charge per unit length on 

the string is not conserved; a string that carries current is also charged. In vacuum, the 

region around such a string has both charge and current due to polarization of the vacuum. 

In the simple case where there are only left (or only right) movers present, the polarization 

charge and current are such that an observer very far from the string sees a completely 

neutral string. However, the screening due to vacuum polarization is extremely weak. A 

much more dramatic screening t&s place when there is a conducting plasma present as 
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would be the case in the interst,ellar or intergalactic meduim. 

To conclude, let us return to our original question: Do fermionic superconducting 

cosmic strings naturally arise in realistic models. 7 The present analysis indicates that 

superconductivity can occur in certain realistic models but that the results ase very model 

dependent. Clearly, the most sensible procedure is to begin with a compelling (or at least 

viable) particle physics theory and determine first whether or not cosmic strings occur 

and then whether or not they are superconducting. Here, we have studied two alternative 

scenarios to the original superconducting cosmic string that may occur in realistic models 

and that therefore should be kept in mind when carrying out the above program. 
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Figure Captions 

Figure 1: Occupation of energy levels for t < 0 (zero electric field). Negative energy levels are 

filled while positive energy levels are unoccupied. 

Figure 2: Occupation of states for t > 7. An electric field has been applied for 0 < t < 7. For 

t > 7, A(t) = A,.’ Positive energy left moving states are occupied; negative energy 

right moving states are empty and there is a net current in the --z direction. 

Figure 3: Process by which a particle moves off the string. A zero mode particle with enough 

energy can make a transition to become a massive particle moves off the string. 

Figure 4: Energy levels in the case where there are no zero modes but only massive bound states. 

There is now a mass gap between positive and negative energy levels. 

Figure 5: Es example of a superconducting cosmic string. 

Figure 6: Diagramatic representation of the perturbation series for the two point function G(z, 1~) = 

w~(~P(Y)lo). 

Figure 7: Motion of an electron in the field of a charged current carrying (i.e., anomalous) su- 

perconducting cosmic string. The electron starts at rest outside the string. The units, 

which we leave as arbitrary, depend on the initial position of the particle as well as the 

charge on the string. 
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Tables 

Table 1: Charge assignments for the superconducting string. Q refers to the electromag 

netic ?Y( 1) charge while Q’ refers the L’( 1)’ charge. 

Table II: Charge assignments for the Es superconducting strings 

Table II 

scalars U(1)” x U(l)l x T fermions U( 1)” x U( 1)’ x T 

41 (4, (40) / E, EC / (-2, 2, 2j, (-2, -2;2) 
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Table III: Winding numbers for the ‘minimal’ cosmic strings for the E6 model in Table 

II. Minimal strings are Nielsen-Olesen strings (i.e., satisfy Eqn()) but have at most three 

fields that wind. 

string 

A 

B 

r C 

D 

E 

jl- 
1 

1 

1 

0 

0 

Table III 

42 
0 

1 

t 

0 
1 
1 

-- 
& 

-1 
0 
0 
0 
1 

44 45 
0 0 

-1 0 

1 
-1 1 

0 -1 

-1 0 

Table IV: Charge assignments for the frustrated string. 
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